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Leveraging DOE’s
Capabilities for the
“Digital Oilfield”
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Traditional Oil & Natural Gas Exploration and Development

Traditional industry focus has been on maximizing production

N
TL

of high-value oil & natural gas in traditional reservoirs

ONSHORE OFFSHORE
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Conventional Oil & Natural Gas Gulf of Mexico or Outer
Development Continental Shelf

e Large-scaleFull Physics
i Modeling

e Exploratory Drilling
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* Field Development Al



https://link.springer.com/article/10.1007/s13202-017-0395-2

Unconventional Oil & Natural Gas Exploration and Development (\=]nariona
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Modern Hydraulic Fracturing techniques in unconventional reservoirs have
enabled enhanced development and have acquired more data than can be

analyzed by current modeling and simulation methods.

* |nitial completion techniquesin a new play are highly
inefficient

* New practices evolve primarily through trial and error

* Thousands of wells may be needed before standard is
developed

* Vast majority of oil and gas is still left in the ground

A significant amount of data goes unused which
likely results in lower production efficiency



https://www.npc.org/Prudent_Development-Topic_Papers/1-3_Offshore_Oil_and_Gas_Supply_Paper.pdf
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Transitioning to a “Digital Oilfield” N = |NATIONAL

What are the benefits of transitioning to a “Digital Oilfield”?

Stylized Representation of Oil and Natural Gas Resource Categorizations

High-Priority Use Cases |  Increase Recovery Efficiency
. ¢ CU rrent EStImatEd Pr|ma ry (not toscale) Original oil and natural
Fleld DEVG'O ment . s T *--,_1-:"""' gas in-place
P Recovery is at 10%- 12% for - -
Fracture Modeling most Unconventional )
Completions Design * Productionratescan drop by o Economically prg,q | TS
: 50% in first year \ natural gas e reseves g are
Enhanced Oil Recovery ’ y \ In-place
Well Design .
Improve Environmental <
Water Management St dshi lessCertain  Certainty ofresource estimate  More Certain
ewa r S I p Source: Adapted from U5, Energy Information Administration
Reservoir Modeling e e s
. - ch o * Reduce physical footprint — — - :
eservoir Characterization « Improve water
Associated Gas management Digitalization Opportunities w/NLs
Well Shut-Ins * Emissions reduction * Integration of multiple dense and real-time data sets
—_— * High performance computing resources
* Application of Al/ML technologies
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NLs uniquely suited to exploit new sensing technologies

Top of the - ;
* . Tullyls. l
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Onondaga Ls. |
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Large data collection rates
and volumes

Fiber optics sensors
Microseismic data
Injected micro- and nano-sensors

Stage-specific production data
Microseismic at

* Sensor deployment best
practices

 Jointinversion of multiple data
streams

* High-fidelity modeling

* Application of machine
learning

ML used to identify source, improve
locations
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Real-Time Forecasting

@ Real-Time Visualization
“CT” for the Subsurface “Advanced Control Room”

Empirical Models
(machine learning;
other reduced-order models)

Rapid Data to Knowledge
Autonomous Monitoring

Rapid
Data to
Knowledge

Rapid Prediction
Virtual Learning

Science

Data Based
Sensors Traditional Pred(ltﬁilc?n
Monitoring & heory,
Forecasting experiment,

simulation/HPC)
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Altered fluid-shale Pyrite oxidation X-ray microscopy

interface Pore in-filling

Oxidizing pyrite
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Deep Convolutional Neural Network (hidden)

.........................................................................................

Fundamental
Studies
DOE Labs
Field - N Data-Driven
Laboratories Approaches
More than 40 recent field projects
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Simulated gas production for different drawdown rates
based on on LANL's discrete fracture network platform.
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Daily Production

Bottom Hole Pressure (PS
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Thank Youl!

Science-informed Machine Learning to Accelerate Real Time (SMART) Decisions in Subsurface Applications

@ Real-Time Visualization
“CT” for the Subsurface Virtual Learning “Advanced Control Room”

Rapid Prediction | Real-Time Forecasting

Enabling better decisions given scarce resources in a highly uncertain subsurface.
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MANAGING CARBON, GROWING ECONOMIES

Leveraging Data and Analytics to Enable Transition

GTl’s Vision for Transitioning to Low-Cost, Low-Carbon Energy
Systems in 2030 and Beyond

gti



GTl is a not-for-profit R&D organization with a nearly 80-year history of
developing clean energy technologies.

GTI envisions a carbon-managed future in which integrated energy systems

leverage low-carbon or carbon-neutral fuels, gases, and infrastructure to limit

global temperature rise.

gti



DUAL IMPERATIVES

We must both decarbonize energy systems AND supply the energy needed to support economic
growth around the world.
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EXPANDING INTO THE FUTURE

Digital data and advanced analytics will drive us into a smarter future
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< q * Improve Operations via Data Learning
I'_%) qg Automations * Cybersecurity

Existing Operations New Operations

Image reimagined from:
15 https://www.energytoday.net/conventional-energy/ the-energy-company-of-the-future-an-existential-crisis-for-oil-and-gas-companies/ g I o



I INNOVATION REQUIRES DATA

Analytical capabilities are restricted by the data we PRESCRIPTIVE
have available to us
PREDICTIVE

DESCRIPTIVE

Growing Analysis Burden
Value increases as complexity
Increases
Data Quality
(Strength)
’ gti




HYDRAULIC FRACTURING TEST SITE (HFTS) PROGRAM

Digital data and advanced analytics will drive us into a smarter future

HFTS-1
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Post-fracture slant core well — the only
existing ground truth of actual fracture
geometry. That data lead to conclusions
that would have never been predicted by

existing commercial fracture simulators.

DOE Funding - 520 million
JIP Co-funding - $53 million gtL
Industry in-kind - ~S600 million
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SunGas
RENEWABLES Integrated Energy Systems

~)LCRI

LOW-CARBON

RESOURCES INITIATIVE

=P (gt

RESEARCH INSTITUTE

Wwia

FUEL CELL

@ PARTNERSHIP

DRIVING FOR THE FUTURE

HYDROGEN
TECHNOLOGY NG
CENTER

’ S gti

click an icon to learn more



https://www.gti.energy/hydrogen-technology-center/
https://hyperh2.co.uk/
https://www.gti.energy/managing-the-california-fuel-cell-partnership-cafcp-to-create-a-sustainable-future-for-zero-emission-vehicles/
https://www.epri.com/lcri?trk_msg=GSPVQDF8GUI4P9G9RLNUS7QKOG&trk_contact=UFJDRO2PCRLGR3JC5DRP198T3K&trk_sid=BVQ8SMHFSNJ5AMD7R4JVFOEAP8&utm_source=listrak&utm_medium=email&utm_term=www.LowCarbonLCRI.com&utm_campaign=Press+Release&utm_content=2020-08-10+LCRI
https://www.epri.com/lcri?trk_msg=GSPVQDF8GUI4P9G9RLNUS7QKOG&trk_contact=UFJDRO2PCRLGR3JC5DRP198T3K&trk_sid=BVQ8SMHFSNJ5AMD7R4JVFOEAP8&utm_source=listrak&utm_medium=email&utm_term=www.LowCarbonLCRI.com&utm_campaign=Press+Release&utm_content=2020-08-10+LCRI
https://www.shell.com/business-customers/catalysts-technologies/licensed-technologies/benefits-of-biofuels/ih2-technology/hydropyrolysis.html#iframe=L2h5ZHJvcHlyb2x5c2lzLWZvcm0
https://www.gti.energy/cool-gtl-a-low-cost-system-for-converting-co2-rich-natural-gas-to-fungible-liquids/
https://www.sungasrenewables.com/sungas-renewables-and-hatch-create-an-alliance-for-design-and-deployment-of-biomass-gasification-systems/

Shannon Katcher | 847-544-3492 | skatcher@gti.energy | www.gti.energy

gl
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Advancing Technologies in Computational
Earth Models;

Spatial Modeling in the Near Surface, Surface and
Subsurface

Jeffrey M. Yarus
Professor, Case Western Reserve University
Halliburton Technology Fellow, Retired
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What Are Computational Earth Models?

Quantitative representations of the earth’s near surface, surface, and/or

subsurface

Think: Size, Shape, Orientation, Composition, Internal Arrangement
Fill the inter-sample space (1D, 2D, 3D, ND)

Niaital Twin

® Built from a variety of data sources

® Interrogated and consumed by a
variety of disciplines and sub-

® Subsurface Digital Twins:
® For the purpose of:

> Education .
_ Research disciplines

» Commercial Enterprise ® Provides a quantitative assessment for
» Public Policy the public or private industry

(_ASE ¢ GREAT LAKES
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How we got to where we are... Key Publications and Technologies

Theevolving Earth Model

< ¥950 1970 1990

| 1960 2000

1980

H.J. De Wijs -
Statistics of Or Hass all;?eVlthx,
Distributions, First geostatistics Sedsi
D.G:Krige's work on Support, applications in the se=im, i
GKrige's wor pport, oil industry Applied Geostatistics Isaaks
{ Center of Geostatistics Delhomme and Giannesini, & Srivastava, 1989
H.S. Sichel,log normal ; ioti 1968 ' 1979 o )
distribution in gold mines Linear Geostatistics Non Linear Geostatistics Multipoint Simulation,
L, | Matheron begins Matheron Completes Regionalized Deffinier/Chiles Conditional Guardigno & Srivastava, issz

probability and; the formation of strata
1
Charles Picquet,
1852, Geography

MOHERES, 1901
Geomatic, 1990
SigmaView, 1992

Harbaugh, Merrium,196s
Computer
Mapping

Geomathematics Geomatic, 1997
Agterberg, 1974

Geologic Factor Analysis,

ZMAP, 1983

Interpolation with Splines, ~ Joreskog, etal., 1976 RockWare, 1083 GSLIB, 1992 JOA 1999
Polynomials for data fitting, digital computer, Agterberg, 1967 Computer Software for RC2 1992
Forsythe, 1957 Contouring by Triangulation, Geosciences, 1974 ODIN 1990’

f Davis, IBM 1964 K och and Link, 1970

i Krumbine and SIOSS_ _Statistics and DataAnalysis
1963 Progressive Linear Fit of 5avis 1975

i Surfaces, Cole, Jordan, !

2 Merriam, 1967 Minimum Curvature, Briggs, 1074

L How-ongis the costof  1st commercial
Britain?, (Fractals)1s67

STRATAMODEL, 1987

Technoguide1996
Surfer, 1983 9

Discrete Smooth Interpolation, Mallet

Leverett, ) S(jmulator, Eclipse 1stcommercial ,1989
1941 Capillary Pressure Automated Contourlng of Irregularly Space _ Release. 1983
b data, Pelto, Elkins, Boyd, 1968 1975 )
y eaceman
Yee, FDTD Gohfer,~1983 FracMan,~1990

~1955 Compositional simulation
1966 Peng-Robinson & Soave-Redlich-

Kwong~1972-76

Stochastic Fracture Modeling

T ASE %
YQEHERN

Multipoint Simulation,
Strebelle, 2002

Smedv og acquires

ROXAR (Emerson 1999)

2010
2020

Geostatistical
Reservoir Modeling,
Deutsch and Prycz,
2014 Gridless
Modeling Big Data Analy tics

Genetic Stochastic Models

Auto fitting of Spatial Models

Volume Modeling Integration Geostatistics and

Ensemble Kelman Modeling Statistics

Nicholas Steno, 1669 Regionalized Variable theor " : ’ . A . T i fly
Original Horizontaljty Va,?agb|e theary Y Mitheron works on UK, Simulation Trgrlm;aﬂlsnaulzim Plu”gliuﬁilca'ﬂ' 1097, Uncertainty Quantffication in fracturedﬁé‘t’z};tbs;zzsg?%i
James Hutton, 1785 1955 Term 1963- 1969, | IRFK DK, n ARCIINFO, 1sec Y reservolrs tatspy in Pyth
Principles of Geosﬁﬁsﬁcs’;ﬂ’st GIS Matheron conditional simulation Matheron Vé]?ffks on Information Schiumberger acquires gstal sz)ng ython,
Uniformitarianism Roger Tomlinson, Jack D 4 TBS, 1072 Ct, 1984 g5 Journel, Isaaks, 1065-80 : )
~1800 used 1963 GIS oK agermond. Bluepack, 1978 1Sim3aD Technoguide 2002 |, erse Modeling Problems gstat, inR, 2016
Strati m’h 4 Term “Krigeage” first used, Calier o Krigpac, 1976 Magma, 1sso 198\8 Isatis, 1993 ; f DS tatSin Pyth
[/ f pny 3 rerm “Keicing fret Sedighgcgrﬁfrbfef‘lrt‘orlss Lognormal Kriging, ‘ Heresim 3D, 1002 Auto History Matching, 2000 ParisTech, 2014 Py geos Zobllg ython,
William Smn?ééfosr}rz]eSérC;‘lzgfsltct:tsin m Magﬂi%’z USBAEE S edments Mathe“’”vlgf“'_ _ H_ereS|m 2D, 1933 goCad RML, 1000 Emerson Acquires
1815 5 9 borous Meda (Bool g’"”'ng IGE%SLW?‘;'C&I Consortium, 1989 Petrel, 1996 Betrel E&R Paradigm, 2417
chartes Lvell. 1554 orous Media (Boolean ~Journel and Huijbregts RC2,1992  Smedvig becomes Petrel Shale
harles Lyell, 183 Modeling), materon. 19Frning Bands Simulation, sournel 1974,
Principles of Geol IRAP, 1990 Roxar (RMS), 1999 Baker acquires JewelEarth/Baker
Oﬁy Geolith, 1993 2014/2015
Andrey Kolmogorov, 1949, Computer Applications, Surface 11, 1970107 STORM, 19% JOA, 2009

SKUA(Paradigm)

Landmark DS
Unconventional ,

Paradigm acquires EDS
(goCad), 2006

2015
Landmark releases V1 s .
DecisionSpace, 2006 Demsmns?}in?:ezglegsuence

Geomathematics
Agterberg, 2014

UVT Space/Time Math Framework

Mallet ,2004 Landmark, Embedded

Stochastic Fracture Modeling,
2015

2030
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How we got to where we are... Unsupervised Clustering

< ¥950

{ 1960

1970
1980

H.J. De Wijs | [ iallix. 1
Statistics of Or : | Hass ag%VIalllx, !
Distibutons, | | First geostatistics
1 2 | 1 s o ~
applications in the
D.Gide’s work on Support, / . PP ”,
e | oil industry
] Center of Geostatistics, Delhomme ahd Giannesini,
H.S. Sichel,llog normal Linear Geostatistics 1968 | ) o
dlstrlbutlonllgqgold mines i i Non Linear Geostatistics
b Matheron begins 1 Matheron Completes Regionalized Delfinier/Chiles Conditional
Nicholas Steno, 1669 : Regionalized : Variable theory 1 irbulation
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Uniformitarianism ! | Roger Tominson, Jack Dangerinong, TBS: 1672 i =k
~1800 : used I 1963 GIS acl%g"ges"ﬁ?;l" J Bluepack, 1978
! (A Term “Krigeage” ﬁr§t used, Calier Krigpac, 1976 M:agma, 1980
Stratigraphy John C. Grlfflths

Lognormal Kriging, !
Matheronae7a, ' Heresim 2D, 1983
i Mining Geostaitistics,
Porous Media (Boolean Journel and Huijbregts
Modeling), vaneron 15F(rning Bands Simulation, sournel 1974,

Term "Kng/ng” first used1967, Scientific Methods

Mameron 1962 SIS |

[ e
William Smith, John C. Griffiths
1815 195, Siz? versus Sorting
1
Charles Lyell, 183l J
Principles of Geolo

Andrey Kolombgorov, 1949,
probabilty and, the fofmalion of strata

Computer Applications,
Harbaugh, Merrium,196s8
Computer
Mapping
Interpolation with Splines,
Polynomials for data fitting, digital computer, Agterberg, 1967
Forsythe, 1957 Contouring by Triangulation,

Davis, IBM 1964 Koch and Link, 1970

Krumbine and Sloss Statistics and DataAnalysis
1963 Progressive Linear Fif of Davis, 1073
Surfaces, Cole, Jordan,
Nle'riem, 1967

Surface Il, 19701975

Geomathematics
Agterberg, 1974
Geologic Factor Analysis,
Joreskog, et.al., 1976 RockWare, 1083
Computer Software for
Geosciences, 1974

4
Charles Picquet, © |

1852, Geography ¢ 1 ZMAP, 1983

Surfer, 1983

{

Minimum Curvature, Briggs, 1974

A \ Howhngis the gostof  1st commercial
| Britain?, (Fractals)1967 . st .
Lev erett, P - Ity S 0lmulator Eclipse 1stcommercial
1941 CapillarylPressure utomate on ourlngo rregularly space ~1975 Release 1983 1
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data, Pelto, Elkins, Boyd, 1968
Yee, FDTD | Compositional simulation

1 9 6 6 1 Peng-Robinson & Soave-Redlich-
1 Kwong~1972-76

i 1
1

1
Peaceman :
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! Matheron works on Information :

STRATAMODEL, 1987

1990

I
1
1
SedSim, 1989
1

1

|

1

Applied Geostatistics Isaaks !
& Srivasfava 1989 :

1

Multlpomt Simulation, i

Guardléno & Srivastava, 1002

Truncated Gaussian

" ] Plurigaussian, 1097,
Simulation, 1967 |

LeLoc’h

1084 SIS, Journel, I5aaks, 1988-89

M ultipoint Simulation,
Strebelle, 2002

1
Schlumtlberger acquires !

2010

2020 2030

Geostatistical

1
. . j Reservoir Modeling, 1
Genetic Stochastic Models : Deutsch and Prycz, :

1 2014 Gridless | _
Auto fitting of Spatial Models Modeling Big D:ata Analy tics
! 1
: Integration Geq'statisﬁcs and
Ensem.ble Kelman Modeling StatlS!IICS

Vblume Modeling

Uncertainty (?uantlflcatlon in fracturedGeostatistics and

reserv oirs unstructured grids
I gstatspy in Python,
2019,

ISim3D Technoguide 2002 |y grse Modeling Problems gstat, inR, 2016
108 Isatis, 1993 RGeostats., MINES o
Herésim 3D, 100 Auto History Matching, 2000 ParlsTech 2014 py geostatsin Python,
' | 2019
goCad RM!‘* 1999 : Emerson Acquires
Consortium, 1989  Petrel, 1996 i I Paradigm, 2017
: RC2 1992 Smedvig becomes petrel E&R Petrel Shale |
IRAP 199 Roxar (RMS), 1999 JewelEarth/Baker
Ge lith, 1993 ( ) Baker acqulres o401
STPRM, ' JOA, 2009

MOHERES, 101 Smedv og acqujres
Geomatic, 1997
1

Geomatic, 1990
1 1

I SigmaView, 1992 !

' GsLIB, 1992 JOA 1969

I RC2 1992
ODIN, 1990 ROXAR (Emerson 1'999)

Technoguide1996 |

Discrete Smooth Interpolation, Mallet
,1989

SKUA(Paradigm)

Landmark DS
Unconventional ,

|
Paradigm acquires EDS |
|
l 2015
1
1
|
1
1
1

(goCad), 2006

Landmark releases V1 L f
DecisionSpace, 2006 DeC|S|oréSupi)?;:e2(gtlegsuence

Geomathematics
Agterberg, 2014

UVT Space/Time Math Framework

Mallet ,2004




How we got to where we are... Trends

< 1950 1970 1990 2010
{ 1960 1980 2000 2020 2030
| Geostatistical Ne'mi'
| Theory ~ Innovatjon
Z Y = = Early . {°f
'_ Geostatistical | <Cl ;
Geologic Software_—« Enterprise Ly O
Data Analysis - ¢ * Solutions olutions

S o & Mapping _commercial # Commercial ~ _ 2
~ _ =~ Mapping Geomodeling _ <

s . Software
Dynamic Dynamic
Simulation Theory_ _ — = Simulation Nz
Software -

Fracture Modelino
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Applications

Oil and Gas: 3D
Permian Basin
(Wolfcamp Model) Fiases =2
86,000 sg mi by
~12,000 cu mi

* Geostatistics
« CNN ML (Facies)

Evens, et. al,
URTEC-2019-
338-MS

Real-Time Air Pollution Index
(NO2,PM10,03, PM2.5, ...)

Sewew |

Air Parif

(https://www.airparif.asso.fr/indices/horair)

* Basin Model
* Sparse Data,
ML
Midland Basin
Yarus, et. al,

DOE GTO,
2020

° Geostatl Stl C S Stratigraphic Data

Geothermal Modeling

Basin Model Input Data Basin Model Output Co-Simulated Output
Wells with measured Locations without Estimated rock properties are Basin model is calibrated with
oRarty Galies measured properties used as coarse-scale prior fine-scale local data. Uncertainty
BroEsY values across the volume distributions are estimated.

Well and

Co-Simulation

Update Initial
Geologic Model

Initial Conditions for Dynamic
Geothermal Reservoir Models

/Local subsettin \\
! (add local data)

e

Source:
Geoff Sims,
New Civil Engineer

Surface Modeling, Stream Drainage &
Subsurface Fracture/Fault Prediction

» Geostatistics
« CART ML

Yarus, et. al,
2003, AAPG

CO? Sequestration P e
. ) Coefficient of "«
Oriskany Formation ationye

Spatial techno-
economic evaluation
(inject & storage).-

w AR S L

Y . 1"
i,/\_/ b a.l

hwm w2 W
T ——

Popova, 2014
Ph.D. Thesis




Industry Challenges

e | | VISUALIZATION |
Computational Environments
. Large Model Sizes and Big Data

*  Enterprise - Cloud-Based, (“Lift @hift”)

. Increase CPU Speed & Memory Software re-designto fit

Think RAWIZ. LATENT 5991 R
. i DATA il

. SaaS and PaaS/laaS INK: newercomputatlpnal systems )

and services

MODELING AND
ANALYTICS
ENGINES/SOFTWARE

DATA Connection API

/

Public Data Model
Sources interpretations

. Domain education on HPDC ++

EM infrastructure and design
*  Gridless modeling (enablement for:)

/\

+  Seamless scaling Automated — and real-time

* Real-time updating and monitoring of EM Think: modeling thatis gridless,

. : : ican nami
«  Integration with proximal products static and dynamic

. Automation

: VW
Uncertainty Assessment | 'Jog_' | K

\ I\ \u'_ \

I\

Redefine: Space of Uncertainty

Sparse and missing data, data cleaning, Think: More inclusive space of
economics uncertainty

\

GREAT LAKES NATIONAL
ENERGY TECHNOLOGY
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Considerations for CO? Sequestration

Models considering CO? injection or the spatial extent of injected CO? require information about the
reservoir properties that are often unknown or oversimplified

® Caprock Characterization

® Deep saline formations:

® QOil and Gas Reservoirs (sandstone, coalbeds, shale, carbonates, ...)

Common EM Challenges:

® Cap and container characterization (faults, fractures, facies, petrophysics)
» Standard geostatistical earth modeling
» Not often done in 3D
® Cap and container post injection chemistry and geomechanics
» How has the formation changed post drilling, injection (CO? and/or O&G completion, P&A, ...)

» Forecasting Model: Not generally done

(Ghanbarnezhad, et.,al, 2016 IntechOpen)
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How we got to where we are... Looking Forward
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InnovationXLab CarbonX Summit

Carbon in the Digital Era: Artificial Intelligence & Machine Learning

THANK YOU!

Please submit your questions in the Zoom Q&A function!

Looking for additional conversation and networking?

Join us in the Peer Connections Lounge after the next panel!



